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Data collected from the sensory test score evaluation of bottled lager beer, together with the chemical
components related to aging, including carbonyl compounds, higher alcohols, unsaturated fatty acid,
organic acids, R-amino acids, dissolved oxygen, and staling evaluation indices, including lag time of
electron spin resonance (ESR) curve, 1,1′-diphenyl-2-picrylhydrazyl (DPPH) scavenged amounts,
and thiobarbituric acid (TBA) values, were used to predict the extent of aging in bottled lager beer,
using both multiple linear regression and principal component analysis methods. Carbonyl compounds,
higher alcohols, and TBA value were significantly and positively correlated with sensory evaluation
of staling flavor. While lag time and DPPH scavenging amount were negatively correlated with taste
test score. Multiple regression analysis was used to fit the sensory test data using the above chemical
compound aging related parameters and evaluation indices as predictors. A variable selection method
based on high loadings of varimax rotated principal components was used to obtain subsets of the
predominant predictor variables to be included in the regression model of beer aging, so as to eliminate
the multicollinearity of the original nine variables. It was found that staling extent was influenced
significantly by higher alcohols, TBA value, and DPPH scavenging amount, and the multicollinearity
of the regression model was found to be weak by examining the variance inflation factors of the new
predictor variables. A mathematic model of the organoleptic test score for beer aging using these
three predictors was obtained by multiple linear regression, showing that the major contributors to
the sensory taste of beer aging were higher alcohols, TBA index, and DPPH scavenging amount,
with the adjusted R2 of the model being 0.62.
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INTRODUCTION

It is generally recognized that the staling of bottled beer is
very complex because of the thousands of flavor chemicals
involved (1). Oxidatively produced unsaturated carbonyl com-
pounds play a major role in the development of stale flavor in
beer. There are several hypotheses, such as Strecker degradation
of R-amino acids (2), oxidation of fatty acids (especially
unsaturated fatty acids) (3, 4), condensation of higher alcohols
(5), and so on. All of these reactions contribute to the course of
aging of bottled beer.

Although the results of taste panel sensory analysis vary in
the response between individuals and different circumstances
and time, such sensory tests are the most widely and commonly

used method to examine the aging extent of beer (4, 6). To
date, no single instrument has been devised that satisfactorily
evaluates flavor in a similar way in which the consumer does.

Multiple regression analysis is one of the most widely used
methodologies for expressing the dependence of a response
variable on several independent (predictor) variables. In spite
of its evident success in many applications, the regression
approach can face serious difficulties when the independent
variables are correlated with each other (7). Multicollinearity,
or high correlation between the independent variables in a
regression equation, can make it difficult to correctly identify
the most important contributors to a complicated process. One
method for removing multicollinearity and redundant indepen-
dent variables is to use multivariate data analysis techniques
(8).

One such method is principal component analysis (PCA),
which is used to separate interrelationships into statistically
independent, basic components. It is useful in regression analysis
to mitigate the problem of multicollinearity and to explore the
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relations among the independent variables, particularly if it is
not obvious which of the variables should be the primary
predictors. The new variables from the PCA are more valid to
use as predictors in a regression equation, since they optimize
spatial patterns and remove possible complications caused by
multicollinearity (9). Subsequently, they allow the identification
of the primary predictors with minimal multicollinearity.

The objective of this study was to use statistical analysis,
including multiple regression and the principal component
analysis, to develop models that predict beer aging as determined
by chemical compounds related to staling and parameters of
evaluating indices of staling as predictor variables. This ap-
proach provided a deeper knowledge of the important factors
that influence the aging, and provide a simple and effective
model of prediction for brewers to monitor the aging of their
beer.

MATERIALS AND METHODS

Beer. Four brands of bottled lager beer commonly purchased by
Chinese customers, produced by different Chinese brewing groups, were
used for this study. The beers included the following: (a) Suntory, with
original gravity 10 °P, from Suntory Brewing Co. Ltd. (Shanghai); (b)
Tsingtao, with original gravity 10 °P, from Tsingtao Brewery Co. Ltd.
(Qingdao); (c) Budweiser, with original gravity 10 °P, from Budweiser
Wuhan International Brewing Co. Ltd. (Wuhan); and (d) Taihushui,
with original gravity 9.5 °P, from China Resources Snow Breweries
Co. Ltd. (Wuxi). Of the investigated beer samples, their shelf time
ranged from shorter than 1 week to 12 months, according to the
production date. All the samples were naturally aged by storing at room
temperature.

Reagents. N-tert-butyl-R-phenylnitrone (PBN) was used as a spin-
trapping reagent and was purchased from Aldrich (Steinheim, Ger-
many). The free radical 1,1-diphenyl-2-picrylhydracyl (DPPH) was
purchased from Tokyo Kasei TOSHIMA. KIT. (Tokyo, Japan). All
other chemical standards were purchased from Sigma (St. Louis, MO)
and were of the highest purity available. The other chemicals and
solvents were of the highest commercial grade and obtained from
Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China).

Aging Evaluation Indices. Lag Time. Lag time of beer samples
was obtained from electron spin resonance spectrometry (ESR) (6).
The ESR spectrum was measured with an electron spin resonance
spectrometer WIN-EPR (Bruker, Rheinstetten, Germany), and the
parameters for measuring the PBN spin adduct were the following:
power, 20 mW; frequency, 9.7 GHz; center field, 3475.000 G; sweep
width, 100.000 G; modulation frequency, 100.00 kHz; modulation
amplitude, 1.00 G; conversion, 163.840 ms; time constant, 80.920 ms;
and sweep time, 167.772 s.

DPPH Radical ScaVenging Amount. DPPH radical scavenging
activity of beer was determined by the absolute scavenging amount of
radicals, according to the method of Brand-Williams et al. (10). A lower
absorbance of the reaction mixture indicated a higher free radical
scavenging activity. DPPH radical scavenging amount was calculated
using the following formula:

DPPH• scavenging amount (mol/L))
initial DPPH• concentration of reaction system (mol/L) ×

DPPH• scavenging activity (%) (1)

TBA. The TBA (thiobarbituric acid) method was used to evaluate
the degree of beer staling and was based on the improved measurement
of Li (11). Degassed beer of 5 mL was added to 2 mL of thiobarbutiric
reactive reagent containing 0.33% (w/v) TBA in 50% (v/v) acetic acid.
The mixture was incubated in a 60 °C water bath for 60 min. The
absorbance of the solution was measured at 530nm, with 5 mL of 50%
(v/v) acetic acid as the blank.

Sensory Test of Stale FlaVor. A panel of 10 experienced panelists
(6 males and 4 females) were selected on their ability to discriminate
staling flavor of bottled beer. All the panelists had participated in a
training program to improve their sensitivity and veracity before the

final sensory evaluation. The training components were carried out from
basic to advanced levels, including ranking, matching, staling flavor
perception, and detection. These components focused on the main
changes of flavor during beer aging, including cardboard flavor, the
bitterness and sweet taste, and the toffeelike, or bready/winey flavor
produced as a result of Maillard reactions. The last parameter was staling
flavor discrimination of bottled beer that had been aged to different
extents, which were produced by three different breweries in China,
for adaption training. Adaption training involved the samples from each
brewery being offered in an order of fresh to stale, that was from
relatively fresh beer (shelf-time was not longer than 7 days) to extremely
aged ones (force-aged beer at 60 °C for 12 days or close to expiration
date).

In the final sensory test, the beer samples were served randomly,
and the panelists were asked to smell, taste, and finally mark the
intensity of extent of staling. The judgment was done on a five-point
scale as outlined in Table 1. The subjective evaluation of the
organoleptic sense was indicated by the mean value of the total panel
data. The task was carried out three times on three separate days, to
reach the consensus and repeatability in the sensory test. Panelists’
sensory evaluation results of a sample would not be adopted if they
were not normal distribution. Overall, the sensory flavor evaluation
protocol described used in this investigation meets the stringent
requirements for valid flavor assessment proscribed by Meilgaard
(12).

Compound Groups Related to Aging. Carbonyl Compounds.
Carbonyl compounds were measured by headspace solid-phase mi-
croextraction and gas chromatography with mass detection (SPME-
GC/MS) (13, 14) with some modification. Headspace SPME using a
75 µm Carboxen-polydimethylsiloxane (CAR-PDMS) fiber provided
sample enrichment and enabled extraction of most forms of carbonyl
compounds involved in beer aging.

Beer (5 g) was added to 2 g of NaCl that was put into a 15 mL vial
for each sample. The sample vials were kept at 20 °C for at least 30
min to establish an equilibrium between the headspace and sample.
The samples was then held at 20 °C in an ultrasonic bath for 40 min
to further expose the fiber to the headspace for absorption of the target
compounds.

The analyses were performed using a GC system associated with a
mass spectrometry (MS) detector (Trace MS, Finnigan, U.S.A.). Helium
was used as the carrier gas with a flow rate of 0.8 mL/min. The
components were separated on a PEG-20,000 capillary column (30 m
× 0.25 mm × 0.25 µm, Shanghai Bioengineering Co Ltd., Shanghai,
China). The oven temperature program was 3.5 min at 40 °C, 5 °C/
min to 60 °C, 6 °C/min to 120 °C, then 8 °C/min to 230 °C for 12
min. The injector temperature was set at 250 °C for the CAR-PDMS
fiber. The temperature of gasification was 200 °C. Detection was by
mass spectrometry of the total ion current obtained by electron impact
at 70 eV. The constituents were identified by comparing the experi-
mental spectra with those of the U.S. National Institute of Standards
and Technology (NIST) 1998 data bank 1.6, U.S.A. (http://web-
book.nist.gov/chemistry/). On the basis of the peak resolution, their
areas were calculated from the GC spectrum, and their values were
presented by the amount of internal standard 2-octanal.

Higher Alcohols. The higher alcohol content of beer was determined
by a headspace gas chromatography (HS-GC) with a flame ionization
detector (FID). The analysis was performed using a Shimadzu GC-

Table 1. Judging of Stale Flavor by Organoleptic Flavor Panel Scores
(Five-Point Scale)

organoleptic sense description

fresh
(not aged)a

slightly
aged

moderately
aged

relative
strongly

aged
strongly
agedb

point 1 2 3 4 5

a Fresh beer, not longer than 1 week. Used in adapting training as the example
of fresh flavor. b Forced-aged (37 °C, 30 days or more) beer and strongly aged
bottled beer (close to the expired date but not out of date). Used in adapting
training as the example of strongly staling flavor.
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2010 gas chromatograph coupled with a FID detector (Shimadzu,
Japan). Separation was performed with a CP-WAX52CB capillary
column (30 m × 0.32 mm × 0.52 µm, Shanghai Bioengineering Co
Ltd., Shanghai, China). The carrier gas was nitrogen with a flow rate
of 3.0 mL/min. The oven temperature program was started at 40 °C
for 2 min, then 10 °C/min to 180 °C for 4 min. The temperature of the
detector was at 250 °C, and the temperature of the gasification oven
was 200 °C. The equilibrium of vials between headspace and samples
was performed at 70 °C for 30 min.

Unsaturated Fatty Acid. The concentration of unsaturated fatty acid
in beer was also determined by gas chromatography after a precolumn
derivatization to fatty acid methyl esters (FAMEs) of the samples. The
preparation included the following steps: 150 mL of beer was extracted
3 times (30 mL, 30 mL, 20 mL) by dichloromethane/methanol solution
of 3:1 (v/v), which then was concentrated to approximately 1 mL using
a rotary evaporator. The concentrated samples were derivatized by an
acidic methanol method by Wang et al. (15) in a 60 °C bath. The
FAMEs were extracted into a small amount of hexane and then injected
into the GC system for analysis. The concentration of unsaturated fatty
acids was expressed as the amount of oleic acid, relative to methyl
heptadecanoate as internal standard. The measurement was performed
using a Shimadzu GC-2010 gas chromatograph coupled with a FID
detector. Separation was performed with a CP-WAX52CB capillary
column 30 m × 0.32 mm × 0.52 µm. Nitrogen/air was used as the
carrier gas with a fractional flow ratio of 5.0, and the flow rate was 3.0
mL/min. The oven temperature program was started at 80 °C for 3min,
10 °C/min to 190 °C for 0.1 min, then 3 °C/min to 220 °C for 10 min.
The temperature of the detector was 250 °C with the injection of 1.0
µL.

Organic Acids. The organic acid of beer was determined using a
RP-HPLC method, performed using a Waters 1525 binary HPLC pump
(Waters, Milford, MA) equipped with a Waters 717 plus autosampler
coupled with a Waters 2478 dual λ absorbance detector at a UV
absorbance of 210 nm. Purified extracts of 10 µL were separated by a
Waters Atlantis dC18 column (5 µm, 4.6 mm × 150 mm) at the
temperature of 30 °C. Elution was carried out with a mobile phase
containing 20 mmol/L NaH2PO4 (pH adjusted to 2.7 with H3PO4), with
a flow rate of 0.5 mL/min.

R-Amino Acids. The content of R-amino acid was also determined
by the RP-HPLC system described above. The column used was a
Hypersil reversed-phase column (4 µm, 3.9 mm × 250 mm) (Agilent,
Santa Clara, CA), held at 40 °C. A two-solvent gradient was used to
run the samples: solution A comprised 20 mM sodium acetate,
methanol, and acetonitrile, in the proportions 1:2:2 (v/v); solution B
was 20 mM sodium acetate, followed as solvent B changing from 0 to
7% (0-11 min), 7 to 12% (11-13.9 min), 12 to 15% (13.9-14 min),
15 to 34% (14-20 min), 34 to 0% (20-22 min), and 0% (22-50 min).
A filtered sample of 10 µL was separated under a flow rate of 1.0 mL/
min and was detected at an absorbance of 338 nm (262 nm for proline).

DissolVed Oxygen. The dissolved oxygen concentration of beer was
analyzed by a portable analysis apparatus Micro Logger 3650 (Orbi-
sphere Laboratories Neuchatel/Geneva, Switzerland), equipped with an
Inpace 2000 sampler (Haffmans, Germany).

Multivariate Modeling Method. The analysis of the data was
carried out using the statistical software, SPSS (Statistical Package for
Social Science, version 13.0 for Windows, SPSS Inc., Chicago, IL).

Principal Component Analysis (PCA). Principal component analysis
(PCA) maximizes the correlation between the original variables to form
new variables that are mutually orthogonal, or uncorrelated (16). It is
a special type of factor analysis that transforms the original set of
intercorrelated variables into a new set of an equal number of
independent uncorrelated variables or principal components (PCs) that
are linear combinations of the original variables. The principal
components are ordered in such a way that the first PC explains most
of the variance in the data, and each subsequent PC accounts for the
largest proportion of variability that has not been accounted for by its
predecessors. Although the number of PCs equals the number of
independent original variables, generally, most of the variation in the
data set can be explained by the first few principal components used
to represent the original observations.

Principal component methods are also used for selecting subsets of
variables for regression equations. One such application is to obtain a
varimax rotation of the principal components and to retain a subset of
the original variables associated with each of the first few components,
which are then used as predictors in the regression. Varimax rotation
ensures that each variable is maximally correlated with only one
principal component and a near zero association with the other
components. More details on the application of these methods and others
are further described in Statheropoulos et al. and Jolliffe (17, 18).

Multiple Regression Analysis. A bivariate correlation matrix of the
data was produced to measure the association between the variables,
displayed in Pearson’s correlation coefficient. Before final modeling,
a PCA was employed for two purposes. First, they were used for
principal component regression analysis, applying the stepwise regres-
sion option in the choice of the principal components to enter the
regression equation, with the sensory test as the dependent variable.
Next, a varimax rotation of the principal components was used as a
variable selection technique to choose the appropriate variables for
inclusion in the ultimate regression model. The objective of this
approach was to minimize the effect of multicollinearity on the
estimation of the regression coefficients and achieve parsimony.

In this study, we combine the multiple regression method and the
principal component analysis (PCA) to obtain prediction models for
beer aging with the concentration of measured compounds and aging
index parameters as predictor variables. Principal component analysis
was used for fitting the data so that only the significant independent
variables responsible for the staling extent observed could be deter-
mined. The relationships between beer aging and other measured
parameters were modeled with three methods: multiple linear regression,
principal component regression, and selected variables with high
loadings on the rotated principal components that are used in a multiple
regression analysis afterward.

RESULTS AND DISCUSSION

Analysis of Measurement and Evaluation Data. Beer
samples of four commercial brands from different brewing
groups were analyzed to determine their degree of staling by
evaluation indices, including the sensory test score, lag time of
ESR curve, DPPH scavenging amount, and TBA value. In
addition, components that were indicative of staling were
measured to collect the data for compounds related to beer aging;
that is, staling-flavor chemicals (carbonyl compounds as typical
staling compounds) and their precursors (higher alcohols,
unsaturated fatty acids, organic acids, R-amino acids), as well
as substances that are activated or accelerated by the staling of
beer, such as oxygen.

For samples produced from different brewing groups and with
different extents of aging, the staling is a result of numerous
off-flavor components, which are usually measured by param-
eters or evaluation indices of staling. However, beer aging is
partially evaluated by a simple staling parameter, representing
just one or several typical flavor compounds as indicative
chemicals (19). On the other hand, too many parameters in one
model can lead to multicollinearity (18). Our clear goal was to
find variables from these indices that were principal determinants
of taste test score.

In this study, six measurement variables and four evaluation
indices were analyzed by multivariate methods, in order to
identify the principal variables for developing a mathematical
model. The measurement and the evaluation indices data from
different samples were carbonyl compounds (CC), higher
alcohols (HA), unsaturated fatty acid (UFA), organic acid (OA),
R-amino acid (AA), dissolved oxygen (DO), lag time of ESR
curve (LT), DPPH scavenging amount (DPPH), and TBA value
(TBA) as independent variables and organoleptic taste score
(TS) as response variable.
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A summary of the characteristics of those 10 parameters is
displayed in Table 2, whose Pearson correlation matrix is shown
in Table 3. Sensory test scores were positively correlated with
carbonyl compounds, higher alcohols, and TBA value and were
negatively correlated with lag time and DPPH scavenging
amount. The Pearson coefficient for the sensory test and other
parameters were generally weak. The sensory test score was
positively correlated with carbonyl compounds in bottled lager
beer, which was expected, since most of these compounds are
known staling flavor components. This indicated that a rise in
carbonyl compounds concentration was associated with the
corresponding sensory identification of staling. The next set of
highly positive correlation between variables and organoleptic
taste score were with higher alcohols and TBA value. Previous
studies have reported that the concentrations of the correspond-
ing aldehydes increase during beer aging, with the participation
of oxygen (1), which explained the positive and high coef-
ficients. So, the correlation coefficient of carbonyl compounds
and higher alcohols are significant with an interval of confidence
of 95%, which indicates a close correlation between the two
parameters. Table 3 also showed the cross correlation between
the different variables. The negative correlations were high
between the sensory test scores and lag time and similarly for
the evaluation of DPPH scavenging amount. The two indices
both measure antioxidant potential of the bottled lager beer with
respect to free radical reactions, which showed a good correla-
tion with beer aging and the two radical-related indices,
compared with that of beer staling and the parameters. It is
widely regarded that a large number of precursors from
nonenzymatic oxidation are involved in staling of beer, such
as higher alcohols, unsaturated fatty acids, organic acids, and
R-amino acids (20). Another important factor is dissolved
oxygen, which in its activated form promotes oxidation
reactions (21, 22). Most of the relationships between the
variables was consistent with those identified in previous
investigations, for instance, TBA value measured by the
chromogenic reaction between thiobarbituric acid and unsatur-
ated aldehydes (23, 24). Accordingly the correlation coefficient
for the TBA value and carbonyl compounds was positive and
high.

Multiple Regression Analysis. The score of organoleptic
taste test assesses the combined impact on flavor of the complex
reactions between precursors and production of off flavors.
Staling in bottled beer is thus the result of the combined effects

of numerous reactive products of aging flavor, including an
increase of off-flavor compounds and a decrease, or even the
disappearance, of desirable aroma and flavor compounds.

A stepwise multiple regression procedure was carried out with
the following variables: CC, HA, UFA, OA, AA, DO, LT,
DPPH, and TBA. The objective was to find the predictive
variables that best fit the sensory test data, in their order of
magnitude of influence. The result of multiple linear regression
modeling of sensory test was listed in Table 4.

The coefficient of multiple determination, standard regression
coefficient for the model parameters, indicates the proportion
of the variation in the organoleptic evaluation explained by these
variables in the model. Standard regression coefficient of an
independent variable is an important parameter that indicates
its predictive value for the dependent variable when the other
factors are kept constant. The higher its absolute value for a
variable, the more significant the influence it has on the
dependent variable, thus the more important its role in the
regression equation. The standard regression coefficient is
obtained after the coefficient of multiple linear regression has
been standardized. Thus, the standard regression coefficient (or
parameter estimate) has no relationship with the unit of the
corresponding factor. The absolute value of the independent
variable indicates its influence on the dependent variable. Table
4a showed that, in the multiple linear model, the highest absolute
value of standard regression coefficient in magnitude among
independent variables was TBA, followed by DPPH, HA, LT,
OA, UFA, CC, DO, and AA, in the order from high to low.
This means that, in the linear model, most of the influence on
the sensory evaluation of staling was explained by the TBA
value, followed by DPPH scavenging amount, higher alcohols,
and so forth.

The result of fitting the regression models on the sensory test
data, using the nine chemicals parameters and evaluation indices
as independent variables, gave the high adjusted R value
(multiple correlation coefficient) for the model of 0.993.

Principal Component Analysis. The results of stepwise
multiple regression were checked for multicollinearity by
examining the variance inflation factors (VIFs) of the predictor
variables, as shown in Table 4a. VIF is a parameter that
measures the extent of linear dependence of the predictor and
the other independent variables. There was a significant amount
of multicollinearity among the predictive variables, judging by
the discriminate threshold of VIF g 10. The presence of such
strong multicollinearity indicates that the model obtained in
Table 4a is invalid.

It is known that beer aging is a very complex process because
there are many chemical groups that have been attributed
involvement in staling. However, some of the indices to evaluate
beer aging are set up to measure the concentration of one or
several kinds of typical staling chemicals. Multicollinearity thus
is caused by the affinitive linear correlation between variables.
As discussed above, the unsaturated aldehydes in carbonyl
compounds are the chromophore of the TBA method, resulting
in a high correlation coefficient between these two related
variables and subsequently the likely prospect of multicollinear-
ity in the multiple regression analysis. The objective of principal
component analysis before modeling was to obtain parsimonious
prediction models (i.e., models that depend on as few variables
as possible) for aging with compounds or evaluation indices
data as predictor variables.

To counter the problem of multicollinearity and achieve
model parsimony, a variable selection method based on principal
component regression analysis was applied to yielded predomi-

Table 2. Summary of the Aging-Related Compounds and Indices of 12
Bottled Beersa

parametersb range mean standard error

components
CC (µg/L) 322.0–2922.6 1342.6 804.2
HA (mg/L) 54.29–84.87 72.25 7.69
UFA (mg/L) 0.0496–0.291 0.1719 0.0838
OA (mg/L) 759.73–912.22 835.93 51.85
AA (mg/L) 307.91–460.40 398.92 50.16
DO (µg/L) 31–58 40.0 9.5

indices
LT (min) 0–120 44 44
DPPH (×10–5 mol/L) 1.95–3.41 2.83 0.44
TBA 0.314–0.693 0.516 0.116
ST 2.10–3.30 2.73 0.34

a Samples are four brands of bottled lager beer with different aging extent,
stored at room temperature. Their naturally aging time range from <1 week to 12
months. b The parameters are presented as follows: CC, carbonyl compounds;
HA, higher alcohols; UFA, unsaturated fatty acid; OA, organic acid; AA, R-amino
acid; DO, dissolved oxygen; LT, lag time of ESR; DPPH, DPPH scavenging amount;
TBA, TBA value; ST, sensory test.
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nant variables for the model. These variables would be used as
new predicting variables in multiple regression analyses to obtain
the final models of beer aging.

First, the predictor variables were transformed by PCA into
nine principal components of equal number, to select a smaller
number of components that would explain most (typically
60-90%) of the total variation in the predictor variables.

The nine original variables were then evaluated for influence
by principal component analysis. After the transformation,
varimax rotation was used to maximize the loading of a predictor
variable on one component. In general, application of PCA

procedures followed by a varimax rotation produced a ranked
series of factors. Table 5 summarizes the results of the varimax
rotation on the nine principal components together with the
amount of variance explained by each component respectively.
The higher the loading of a variable, the more that variable
contributes to the variation accounted for by that particular
principal component. In practice, only loadings with absolute
values greater than 50% are selected for the principal component
interpretation. A principal component with an eigenvalue g 1,
is usually considered as being statistically significant (18). The
variables affected different contribution to each PC, with the

Table 3. Pearson Correlation Matrix of Variablesa Related to Beer Aging

CC HA UFA OA AA DO LT DPPH TBA ST

CC 1 0.648b -0.013 0.544 -0.047 -0.418 -0.705c -0.782c 0.760c 0.711c

HA 1 0.203 0.439 -0.097 -0.631b -0.586b -0.430 0.712c 0.645b

UFA 1 0.122 0.116 -0.459 0.160 0.014 0.021 -0.148
OA 1 0.089 -0.149 -0.286 -0.344 0.209 0.472
AA 1 0.065 0.174 0.058 -0.075 -0.306
DO 1 0.642b 0.580b -0.734c -0.425
LT 1 0.712c -0.809c -0.722c

DPPH 1 -0.864c -0.638b

TBA 1 0.578b

ST 1

a The parameters are presented as follows: CC, carbonyl compounds; HA, higher alcohols; UFA, unsaturated fatty acid; OA, organic acid; AA, R-amino acid; DO,
dissolved oxygen; LT, lag time of ESR; DPPH, DPPH scavenging amount; TBA, TBA value; ST, sensory test. b The correlation coefficient is significant with an interval of
confidence of 95%. c The correlation coefficient is significant with an interval of confidence of 99%.

Table 4. Multiple Linear Regression Models for Prediction of Organolepic Taste Evaluations

(a) originalb

predictorsa constant AA DO CC UFA OA LT HA DPPH TBA

standard regression coefficientd -0.063 0.072 -0.093 -0.175 -0.446 -0.689 1.540 -1.926 -2.523
estimated regression coefficient 8.719 0.000 0.003 -3.9 × 10-5 -0.708 -0.003 -0.005 0.068 -1.476 -7.375
standard error 0.409 0.000 0.003 0.000 0.180 0.000 0.000 0.003 0.076 0.367
variance inflation factors (VIF) 1.164 7.622 6.738 3.016 3.147 5.874 8.697 15.040 24.020
adjusted R2 of model 0.993

(b) after PCAc

predictors constant PC7 PC8 PC3 PC5 PC6 PC4 PC2 PC1 PC9

standard regression coefficientd -0.077 0.113 -0.157 -0.269 -0.295 0.344 0.406 -0.480 -0.531
estimated regression coefficient 2.733 -0.026 0.038 -0.053 -0.091 -0.100 0.117 0.138 -0.163 -0.180
standard error 0.008 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009
variance inflation factors (VIF) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
adjusted R2 of model 0.993

a The predictors are presented as follows: CC, carbonyl compounds; HA, higher alcohols; UFA, unsaturated fatty acid; OA, organic acid; AA, R-amino acid; DO,
dissolved oxygen; LT, lag time of ESR; DPPH, DPPH scavenging amount;, TBA, TBA value; with sensory test score as dependent variable. b The analysis is performed
on the data of original variables. c The analysis is performed on the principal components as variables, after PCA of original variables. d Otherwise known as equation
parameter estimate.

Table 5. Rotated Principal Component Loadings of Variables of Measured Compounds Parameters and Evaluating Indices

predictorsa PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

CC -0.710 0.346 -0.015 0.359 -0.018 -0.178 0.079 0.456 -0.001
HA -0.302 0.887 0.130 0.240 -0.060 0.137 -0.145 0.062 -0.006
UFA 0.038 0.078 0.986 0.058 0.061 0.058 -0.095 -0.001 2.07 × 10-5

OA -0.162 0.163 0.059 0.968 0.055 -0.048 -0.002 0.040 -0.002
AA 0.032 -0.043 0.054 0.047 0.995 0.040 0.015 -0.003 0.000
DO 0.463 -0.352 -0.411 0.018 0.036 0.259 0.650 0.035 -0.003
LT 0.593 -0.292 0.146 -0.125 0.109 0.675 0.231 -0.069 -0.004
DPPH 0.964 -0.070 0.000 -0.179 0.027 0.094 0.133 -0.003 0.075
TBA -0.827 0.458 0.011 -0.008 -0.017 -0.205 -0.201 -0.008 0.151
eigenvalue 4.561 1.361 1.124 0.871 0.500 0.319 0.181 0.060 0.022
% of variance 50.683 15.127 12.485 9.677 5.554 3.546 2.010 0.671 0.246
cumulative % 50.683 65.810 78.296 87.973 93.527 97.073 99.083 99.754 100.000

a The variables are presented as follows: CC, carbonyl compounds; HA, higher alcohols; UFA, unsaturated fatty acid; OA, organic acid; AA, R-amino acid; DO, dissolved
oxygen; LT, lag time of ESR; DPPH, DPPH scavenging amount; TBA, TBA value.

7110 J. Agric. Food Chem., Vol. 56, No. 16, 2008 Liu et al.



loadings of the first three factors (eigenvalues g 1) plotted in
Figure 1. It was noted that all variables dispersed separately
on the three-axis chart. The indices of higher alcohols (HA),
TBA value (TBA), carbonyl compounds (CC), unsaturated fatty
acid (UFA), and DPPH scavenging amount (DPPH) were
observed to have higher loadings for their principal components
than the other original variables.

Table 5 shows the rotated principal component loadings of
variables. It was noted that the first three principal components
accounted for 78.3% of the total variation. In the data for beer
differing in quality and extent of aging, the first principal
component PC1 accounted for 50.7% of the total variation. It
is loaded heavily on DPPH, TBA, and CC with little contribu-
tions from other variables. The second PC, which accounted
for about 15.1% of the total variation, indicated the importance
in variation in the compounds measure by the index HA. The
third PC loaded heavily on UFA, explaining 12.5% of the
variation. The remaining variables were represented by the rest
of the principal components accounting successively for less
of the total variation. Principal components four, five, six, and
seven loaded heavily on factors OA, AA, LT, and DO,
respectively. The last two principal components PC8 and PC9
were contributed by original variables with lower loadings of
original variables, compared to the first seven PCs. Of all
variables, CC explained most on PC8, and TBA did most on
PC9.

Model Fitting. A stepwise regression analysis was then
carried out, with principal components as independent variables,
to determine which of the original independent variables are
most predictive of variation of the sensory test score (Table
4b). The main objective of this data processing step was to select
a subset of the variables that provides the best prediction
equation for modeling of beer staling using the multiple
regression method. The selected original independent variables
were those with high loadings, associated with each of the

principal components that were included in the regression
equation and that had high coefficients of determination. From
Tables 4b and 5, the PCs in regression were matched to
independent variables with both high standard regression
coefficients of PCs and heavy loadings in these PCs. The first
three PCs with the largest standard regression coefficients were
chosen, that being PC9, PC1, and PC2 in the order from largest
to smallest. Then, TBA was selected from PC1 and PC9, DPPH
was selected from PC1, and HA from PC2, according to the
loadings of the original variables in the PCs. These three
variables were then used as the primary predictor variables in
a subsequent regression analysis, and the following model was
derived:

ST) 4.141+ 0.041[HA]- 0.938[TBA]- 3.342[DPPH]
(2)

The multiple regression model using the three variables, HA,
TBA, and DPPH, had an adjusted R2 of 0.617. The coefficients
of the regression are listed in Table 6 and were all statistically
significant (P < 0.05). The distributions of the residuals were
approximately normal, with zero means and no obvious serial
correlation, which represented an indication of a valid model
fit. The variance inflation factors of the coefficients were also
shown, with 2.790 for higher alcohols, 5.408 for TBA, and 8.943
for DPPH, which indicated a weak level of multicollineariy in
the new model. Fitting model with reduced multicollinearity
resulted in an adjusted R2 of 0.62, lower but closer in practice
compared with Table 4a of the regression with the original
variables.

The correlation between the predicted and calculated sensory
test scores of bottled lager beer is shown in Figure 2, with eq
2 plotted against the standard expected values for sensory test
score and the corresponding observed values. The scatterplot
diagram shows that most observed values appear to fit the
predicted values closely. The discrepancies between the pre-
dicted and the observed values could be due to factors that were
not considered in the study, such as bitterness from hop, the
Maillard products with thermal steps, the inevitable error of
subjective judgment of organoleptic test, and so forth. On the
other hand, the more sets of samples there are in the regression,
the closer the model will be to the actual beer aging, as
prospected in the future investigation.

Figure 1. Rotated component plot of first three factors after principal
components analysis (PCA) of nine predictors: CC, carbonyl compounds;
HA, higher alcohols; UFA, unsaturated fatty acid; OA, organic acid; AA,
R-amino acid; DO, dissolved oxygen; LT, lag time of ESR; DPPH, DPPH
scavenging amount; TBA, TBA value.

Table 6. Coefficients of Multiple Linear Regression Models Fitting with
Aging Parameters after PCA

predictors constant HA TBA DPPH

standard regression coefficient 0.932 -1.143 -1.224
estimated regression coefficient 4.141 0.041 -0.938 -3.342
standard error 1.332 0.014 0.332 1.630
variance inflation factors 2.790 5.408 8.943

Figure 2. Comparison between sensory test scores expected by the
proposed model and those observed for bottled lager beer. The beer
samples differ by manufacturing brewery and aging time. Sample number
n ) 12.
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Among the three predictor variables of the fitted model, higher
alcohols were the first predominant factor, followed by TBA
value, and DPPH scavenging amount. It has been reported that
free radicals are one of the most important substance groups
for oxidation during beer aging, with hydroxyl radicals activated
for beer staling by reacting with ethanol (25). It has been
suggested that these reactive oxygen species (ROS) may react
by a similar mechanism with the main higher alcohols, produc-
ing the majority of carbonyl compounds in aged beer. TBA is
a measurement index of typical unsaturated aldehydes that are
the alkedienals, in carbonyl compounds, which account for the
undesirable sensory profile of aged beer. As for the DPPH
scavenging method, the capability to scavenge DPPH free
radicals is counted by the antioxidative potential of beer, which
is another influence in beer aging, as opposed to oxidation.
Therefore, the complicated course of aging can be discussed in
terms of oxidation and antioxidation. In the model in eq 2, higher
alcohols and TBA value were parameters of oxidation aspect,
while DPPH scavenging amount was the index reflecting the
antioxidative potential of the beer.

In summary, the study showed that, in natural aging of bottled
lager beer from Chinese breweries, the indices of higher alcohols
and TBA value together with DPPH scavenging ability can be
adequately used to estimate the extent of aging. The study also
showed that PCA, combined with varimax rotation, provides a
good method for variable selection to identify the most
appropriate subset of variables to use for modeling beer aging.
This statistical process mitigates the problem of multicollinearity
and achieves model parsimony.
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